Monthly Archive: 7 月 2019

时间序列分析:简单指数平滑

1. 朴素方法   使用 $X_{n+h}^{n}$ 表示使用时刻为 $n$ 的数据对 $n+h$ 时刻进行预测的预测值,则一种非常朴素的预测方法是直接使用 $n$ 时刻的值 $x_n$ 作为 $n + 1$ 时刻的预测值,即 \begin{equation} x_{n+1}^n = x_n \end{equation} 考虑季节性因素,对于周期为 $S$ 的序列,可以使用上一个周期的值进行预测,…
Read more

时间序列分析:ARIMA 建模示例

1. 一般流程   对时间序列的分析和建模一般有一下几个步骤: 查看时间序列的图像: 1.1. 如果具有趋势,可能需要对序列进行差分; 1.2. 如果方差随时间变化,可能需要对序列进行转换,如 $\log$ 变换。先进行 $\log$ 变换再做差分的变换称为 Log-Return。 查看 ACF 图像,判断滑动平均的阶数。 查看 PACF 图像,判断自回归阶数。 选择若干组参数进行建模,可以使用如…
Read more

时间序列分析:Ljung-Box Q 统计量

  为了对序列的自相关系数进行推断,Box 和 Pierce 提出了 Portmanteau 统计量 \begin{equation} Q^*(m) = T \sum_{i=1}^m r_i^2 \tag{1} \end{equation} 其中 $T$ 为序列长度,$r_i$ 为样本自相关系数。在某些情况下,$Q^*(m)$ 趋近于自由度为 $m$ 的 $\chi^2$ 分布,即 \begin{…
Read more

时间序列分析:AIC

  使用 ACF 和 PACF 图像可以在一定程度上帮助我们确定数据所符合的模型及其阶数,但面对实际的数据时,往往会发现多个模型都能较好地拟合数据。   假设有一个时间序列 ts.data 如图 1 所示,计算其 ACF 和 PACF 图像如图 2、图 3 所示。 可见 ACF 图像呈现连续衰减,PACF 图像在滞后为 $2$ 处截断,这看上去像是一个 $\mathrm{AR}(2)$ 过程,但比…
Read more