Monthly Archive: 7月 2019

应用时间序列分析(3)趋势

1. 确定趋势与随机趋势   平稳时间序列的均值函数是时域上的常数,而一般时间序列的均值函数可能是任意的时间函数。均值函数体现了时间序列的趋势,趋势可能是难以琢磨的。例如随机游动在任意时间上都有零均值,在相邻时点上具有很强的正相关,且随机过程的方差随时间的增加而增加,由此会带来表面上的趋势;而对同样的过程进行反复模拟,则可能会得到完全不同的“趋势”。这样的趋势称为随机趋势。   趋势有时也会具有某…
Read more

应用时间序列分析(2)平稳性及典型时间序列示例

1. 平稳性   根据观测记录对随机过程的结构进行统计推断时,通常必须对其作出某些简化且大致合理的假设,其中最重要的假设是平稳性。平稳性的基本思想是,决定过程特性的统计规律不随时间的变化而改变。从一定意义上说,过程位于统计的平衡点上。特别地,如果对一切时滞 $k$ 和点 $t_1, t_2, \cdots, t_n$,都有 $Y_{t_1}, Y_{t_2}, \cdots, Y_{t_n}$ 与…
Read more

应用时间序列分析(1)基本概念

本系列为《时间序列分析及应用 R 语言》一书的整理。 1. 时间序列与随机过程   随机变量序列 $\{Y_t: t = 0, \pm 1, \pm 2, \pm 3, \cdots \}$ 称为一个随机过程,以之作为观测时间序列的模型。该过程的完整概率结构是由所有 $Y$ 的有限联合分布构成的分布族决定的。联合分布中的大部分信息可以用过均值、方差和协方差来描述,无需直接处理这些多…
Read more