数理统计 Cheat Sheet 8:区间估计

1. 置信区间   在测量或计算一个未知量时,除了希望得到一个近似值,还希望得到这个近似值的精确程度(所求真值所在的范围),即估计误差。类似地,在估计未知参数 $\theta$ 时,在得到点估计 $\hat\theta$ 之外,还希望能估计出一个范围,并希望知道这个范围包含参数 $\theta$ 真值得可信程度。这样的范围常以区间的形式给出,并同时给出此区间包含参数 $\theta$ 真值得可信程…
Read more

数理统计 Cheat Sheet 7:估计量的评选标准

  使用不同的估计方法对同一未知参数进行估计,可能会得到不同的估计量。原则上任何统计量都可以作为未知参数的估计量,通常使用如下的标准来评价统计量的质量。 1. 无偏性   设 $X_1, X_2, \cdots, X_n$ 是总体 $X$ 的一个样本,$\theta \in \Theta$ 是包含在总体 $X$ 的分布中的待估参数,$\Theta$ 是 $\theta$ 的取值范围。   无偏性 …
Read more

数理统计 Cheat Sheet 6:点估计

  估计和假设检验是统计推断所研究的两大基本问题,其中对总体参数的估计主要分为点估计和区间估计。   点估计问题指的是当总体 $X$ 的分布函数的形式已知,而它的一个或多个参数未知,借助于总体 $X$ 的一个样本来估计总体未知参数的值的问题。   点估计问题的一般提法为:设总体 $X$ 的分布函数 $F(x;\theta)$ 的形式为已知,$\theta$ 为待估计参数,$X_1, X_2, \c…
Read more

数理统计 Cheat Sheet 4:常用统计量的分布

  统计量的分布称为抽样分布。在使用统计量进行统计推断时,常需要知道它的分布。当总体分布函数已知时,抽样分布是确定的,但要求出统计量的精确分布一般来说是困难的。一下给三个常用统计量的分布。 1. $\chi^2$ 分布   设 $X_1, X_2, \cdots, X_n$ 是来自总体 $N(0, 1)$ 的样本,则称统计量 \begin{equation} \chi^2 = X_1^2 + X_…
Read more

数理统计 Cheat Sheet 3:样本及抽样分布

1. 随机样本   定义 设 $X$ 是具有分布函数 $F$ 的随机变量,若 $X_1, X_2, \cdots, X_n$ 是具有同一分布函数 $F$ 的、相互独立的随机变量,则称 $X_1, X_2, \cdots, X_n$ 为从分布函数 $F$(或总体 $F$、或总体 $X$)得到的容量为 $n$ 的简单随机样本,简称样本。它们的观察值 $x_1, x_2, \cdots, x_n$ 称为…
Read more

数理统计 Cheat Sheet 2:中心极限定理

  在现实中,有些事件的发生会受到大量相互独立的随机因素的影响,而其中每一个因素对事件的影响又是微弱的,此类事件往往近似服从正态分布。 1. 独立同分布的中心极限定理   定理一(独立同分布的中心极限定理)设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立,服从同一分布,且具有数学期望和方差 $E(X_k) = \mu, \; D(X_k) = \sigma^2 …
Read more

数理统计 Cheat Sheet 1:理解大数定理

1. 辛钦大数定理   大量实验证实,随机事件 $A$ 的频率 $f_n(A)$ 随重复试验的次数 $n$ 的增大而稳定在一个常数附近,频率的稳定性是概率定义的客观基础,也符合直观上的认识。大数定律从理论上说明了频率的稳定性。   弱大数定理(辛钦大数定理)设 $X_1, X_2, \cdots$ 是相互独立、服从同一分布的随机变量序列,且具有数学期望 $E(X_k) = \mu$($k = 1,…
Read more