Monthly Archive: 1 月 2019

概率论 Cheat Sheet 8:其他离散型概率分布

1. 几何随机变量   在独立重复试验中,每次成功的概率为 $p$,$0 < p < 1$,重复试验直到试验首次成功为止,令 $X$ 表示需要试验的次数,使 $X = n$ 的充分必要条件是前 $n – 1$ 次试验失败,而第 $n$ 次试验成功。又因假定各次试验是独立的,有 \begin{equation} P\{X = n\} = (1 – …
Read more

概率论 Cheat Sheet 5:随机变量、期望和方差

1. 随机变量   在进行试验时,相比于直接的试验结果,我们有时更关心试验结果的某些函数。例如打麻将时掷两枚骰子,我们关心的是两枚骰子点数之和,而不关心每一枚骰子是什么点数。这些定义在样本空间上的实值函数,称为随机变量(Random Variable)。   因为随机变量的取值由试验结果决定,因此我们也会对随机变量的可能取值指定概率。   对于随机变量 $X$,定义其累计分布函数(Cumulati…
Read more

概率论 Cheat Sheet 4:独立事件

1. 独立事件   在已知 $F$ 发生的条件下,$E$ 发生的条件概率 $P(E|F)$ 通常不等于 $E$ 发生的非条件概率 $P(E)$,即知道了 $F$ 的发生通常会改变 $E$ 发生的概率。如果已知 $F$ 发生并不影响 $E$ 发生的概率,即 $P(E|F) = P(E)$,则称 $E$ 和 $F$ 是独立的。   由 $P(E|F) = \frac{P(EF)}{P(F)}$,如果 …
Read more

概率论 Cheat Sheet 3:条件概率与贝叶斯公式

1. 条件概率   对于事件 $E$ 和 $F$,使用 $P(E|F)$ 表示在 $F$ 已经发生的情况下,$E$ 发生的概率。对于 $P(E|F)$,如果 $F$ 已经发生了,那么为了让 $E$ 也发生,其结果必然既属于 $E$ 又属于 $F$,即这个结果必然属于 $EF$。在 $F$ 已经发生的前提下,$F$ 成了新的样本空间,因此 $E$ 发生的(条件)概率等于 $EF$ 发生的概率与 $F…
Read more