Math

线性代数 Cheat Sheet 5-8:特征值的迭代估计

1. 幂算法   幂算法适用于 $n \times n$ 矩阵 $A$ 由严格占优特征值(亦称主特征值)$\lambda_1$ 的情况。$\lambda_1$ 为主特征值的意思是 $\lambda_1$ 的绝对值比其他特征值的绝对值都大。此时,幂算法产生一个近似 $\lambda_1$ 的数列和一个近似对应主特征向量的向量序列。   为简单起见,假设 $A$ 可对角化,特征向量 $\boldsym…
Read more

线性代数 Cheat Sheet 5-5:复特征值

  $n \times n$ 矩阵的特征方程含有 $n$ 次多项式,如果考虑复根,方程恰好有 $n$ 个根(重根重复计算)。对复特征值的研究能揭示矩阵中隐藏的信息,通常与周期、震动、旋转等问题相关。   建立在 $\mathbb{R}^n$ 基础上的矩阵特征值-特征向量理论同样可以应用到 $\mathbb{C}^n$。因此,一个复数 $\lambda$ 满足 $\det(A – \la…
Read more

线性代数 Cheat Sheet 5-3:对角化

  如果一个方阵 $A$ 相似于对角阵,即存在可逆矩阵 $P$ 和对角矩阵 $D$,有 $A = PDP^{-1}$,则称 $A$ 可对角化。   定理 5(对角化定理)$n \times n$ 矩阵 $A$ 可对角化的充分必要条件时 $A$ 有 $n$ 个线性无关的特征向量。事实上,$A = PDP^{-1}$,$D$ 为对角矩阵的充分必要条件是 $P$ 的列向量是 $A$ 的 $n$ 个线性无…
Read more