时间序列分析:ARIMA 建模示例

1. 一般流程   对时间序列的分析和建模一般有一下几个步骤: 查看时间序列的图像: 1.1. 如果具有趋势,可能需要对序列进行差分; 1.2. 如果方差随时间变化,可能需要对序列进行转换,如 $\log$ 变换。先进行 $\log$ 变换再做差分的变换称为 Log-Return。 查看 ACF 图像,判断滑动平均的阶数。 查看 PACF 图像,判断自回归阶数。 选择若干组参数进行建模,可以使用如…
Read more

时间序列分析:Ljung-Box Q 统计量

  为了对序列的自相关系数进行推断,Box 和 Pierce 提出了 Portmanteau 统计量 \begin{equation} Q^*(m) = T \sum_{i=1}^m r_i^2 \tag{1} \end{equation} 其中 $T$ 为序列长度,$r_i$ 为样本自相关系数。在某些情况下,$Q^*(m)$ 趋近于自由度为 $m$ 的 $\chi^2$ 分布,即 \begin{…
Read more

时间序列分析:AIC

  使用 ACF 和 PACF 图像可以在一定程度上帮助我们确定数据所符合的模型及其阶数,但面对实际的数据时,往往会发现多个模型都能较好地拟合数据。   假设有一个时间序列 ts.data 如图 1 所示,计算其 ACF 和 PACF 图像如图 2、图 3 所示。 可见 ACF 图像呈现连续衰减,PACF 图像在滞后为 $2$ 处截断,这看上去像是一个 $\mathrm{AR}(2)$ 过程,但比…
Read more

时间序列分析:偏自相关函数

1. 问题   在 $\mathrm{AR}(p)$ 过程中,每个时刻的值都与历史时刻相关,导致其自相关函数呈现逐渐衰减,而不会像 $\mathrm{MA}(q)$ 那样出现截断。我们希望能够单独分析两个时刻随机变量之间的相关性,而不受其他时刻的影响,这样就可以方便地确定 $\mathrm{AR}(p)$ 过程的阶数。 2. 偏自相关的一般例子   看一个更一般的例子。R 中 isdals 包的 …
Read more

时间序列分析:差分方程

1. 定义   在前文中给出的 $MA(q)$ 过程的定义使用了递归的形式,例如 $X_t = \phi X_{t-1} + e_t$,使用 $\{X_t\}$ 在 $t-1$ 时刻的值 $X_{t}$来定义 $X_t$。更一般地,形如 \begin{equation} y_n = a_1 y_{n-1} + a_2 y_{n-2} + \cdots + a_n y_{n-k} +…
Read more