Author Archive: nex3z

概率论 Cheat Sheet 10:连续型随机变量

1. 定义   设 $X$ 是一个随机变量,如果存在一个定义在实数轴上的非负函数 $f$,使得对于任一个实数集 $B$,满足 \begin{equation} P\{X \in B\} = \int_B f(x) \mathrm{d}x \tag{1} \end{equation} 则称 $X$ 为连续型(Continuous)随机变量。函数 $f$ 称为随机变量 $X$ 的概率密…
Read more

概率论 Cheat Sheet 9:随机变量和的期望、分布函数的性质

1. 随机变量和的期望   期望的一个重要性质是一组随机变量的和的期望等于这组随机变量各自期望的和。   给定一个随机变量 $X$,则当 $s \in S$(即 $s$ 表示一次试验结果)时,$X(s)$ 表示此事随机变量 $X$ 的取值。现在,如果给定随机变量 $X$ 和 $Y$,那么它们的和任然是随机变量,即 $Z = X + Y$ 是随机变量。并且,$Z(s) = X(s) + Y(s)$ …
Read more

概率论 Cheat Sheet 8:其他离散型概率分布

1. 几何随机变量   在独立重复试验中,每次成功的概率为 $p$,$0 < p < 1$,重复试验直到试验首次成功为止,令 $X$ 表示需要试验的次数,使 $X = n$ 的充分必要条件是前 $n – 1$ 次试验失败,而第 $n$ 次试验成功。又因假定各次试验是独立的,有 \begin{equation} P\{X = n\} = (1 – …
Read more

概率论 Cheat Sheet 5:随机变量、期望和方差

1. 随机变量   在进行试验时,相比于直接的试验结果,我们有时更关心试验结果的某些函数。例如打麻将时掷两枚骰子,我们关心的是两枚骰子点数之和,而不关心每一枚骰子是什么点数。这些定义在样本空间上的实值函数,称为随机变量(Random Variable)。   因为随机变量的取值由试验结果决定,因此我们也会对随机变量的可能取值指定概率。   对于随机变量 $X$,定义其累计分布函数(Cumulati…
Read more

概率论 Cheat Sheet 4:独立事件

1. 独立事件   在已知 $F$ 发生的条件下,$E$ 发生的条件概率 $P(E|F)$ 通常不等于 $E$ 发生的非条件概率 $P(E)$,即知道了 $F$ 的发生通常会改变 $E$ 发生的概率。如果已知 $F$ 发生并不影响 $E$ 发生的概率,即 $P(E|F) = P(E)$,则称 $E$ 和 $F$ 是独立的。   由 $P(E|F) = \frac{P(EF)}{P(F)}$,如果 …
Read more

概率论 Cheat Sheet 3:条件概率与贝叶斯公式

1. 条件概率   对于事件 $E$ 和 $F$,使用 $P(E|F)$ 表示在 $F$ 已经发生的情况下,$E$ 发生的概率。对于 $P(E|F)$,如果 $F$ 已经发生了,那么为了让 $E$ 也发生,其结果必然既属于 $E$ 又属于 $F$,即这个结果必然属于 $EF$。在 $F$ 已经发生的前提下,$F$ 成了新的样本空间,因此 $E$ 发生的(条件)概率等于 $EF$ 发生的概率与 $F…
Read more

概率论 Cheat Sheet 2:概率论公理

1. 样本空间和事件   对于一个试验,假设所有可能的结果是一致的,则所有可能结果构成的集合称为该试验的样本空间(Sample Space),记为 $S$。   样本空间的任意子集 $E$ 称为事件(Event),事件是由试验的某些可能结果组成的一个集合。如果试验的结果包含在 $E$ 里面,就称事件 $E$ 发生了。   对于用一个样本空间 $S$ 的任意两个事件 $E$ 和 $F$,定义一个新的…
Read more

概率论 Cheat Sheet 1:组合分析

  本系列整理自《概率论基础教程(原书第 9 版)》,包含关键定义、定理和证明,便于查用。 1. 引言   概率论中的很多问题都可以通过计算某个事件可能发生结果的数目来解决。关于计数的数学理论通常称为组合分析(Combinatorial Analysis)。 2. 计数基本法则   计数基本法则 假设有两个试验,其中试验 1 有 $m$ 种可能的结果,对应于试验 1 的每一个结果,试验 2 有 $…
Read more