线性代数 Cheat Sheet 5-2:特征方程
1. 行列式 设 $A$ 是 $n \times n$ 矩阵,$U$ 是对 $A$ 作行替换和行交换(不做行倍乘)所得到的任一阶梯型矩阵,$r$ 是行交换的次数,那么 $A$ 的行列式 $\det A = (-1)^r u_{11} \cdots u_{nn}$。如果 $A$ 可逆,那么 $u_{11} \cdots u_{nn}$ 都是主元(因为 $A \sim I_n$ 且 $u_{ii}…
Read more
learn, build, evaluate
1. 行列式 设 $A$ 是 $n \times n$ 矩阵,$U$ 是对 $A$ 作行替换和行交换(不做行倍乘)所得到的任一阶梯型矩阵,$r$ 是行交换的次数,那么 $A$ 的行列式 $\det A = (-1)^r u_{11} \cdots u_{nn}$。如果 $A$ 可逆,那么 $u_{11} \cdots u_{nn}$ 都是主元(因为 $A \sim I_n$ 且 $u_{ii}…
Read more
尽管变换 $\boldsymbol x \mapsto A \boldsymbol x$ 有可能使向量往各个方向移动,但通常会有某些特殊向量,$A$ 对这些向量的作用是简单的。 定义 $A$ 为 $n \times n$ 矩阵,$\boldsymbol x$ 为非零向量,若存在数 $\lambda$ 使 $A \boldsymbol x = \lambda \boldsymbol x$ 有…
Read more
马尔可夫链习惯上用来描述用用一种方法进行多次实验或测量,实验中每次测试的结果属于几个指定的可能结果之一,每次测试结果仅依赖于最近的前一次测试。 一个具有非负元素且各元素的数值相加等于 $1$ 的向量称为概率向量。随机矩阵是各列向量均为概率向量的方阵。马尔可夫链是一个概率向量序列 $\boldsymbol x_0, \boldsymbol x_1, \boldsymbol x_2, \cdo…
Read more