数理统计 Cheat Sheet 2:中心极限定理

  在现实中,有些事件的发生会受到大量相互独立的随机因素的影响,而其中每一个因素对事件的影响又是微弱的,此类事件往往近似服从正态分布。 1. 独立同分布的中心极限定理   定理一(独立同分布的中心极限定理)设随机变量 $X_1, X_2, \cdots, X_n, \cdots$ 相互独立,服从同一分布,且具有数学期望和方差 $E(X_k) = \mu, \; D(X_k) = \sigma^2 …
Read more

数理统计 Cheat Sheet 1:理解大数定理

1. 辛钦大数定理   大量实验证实,随机事件 $A$ 的频率 $f_n(A)$ 随重复试验的次数 $n$ 的增大而稳定在一个常数附近,频率的稳定性是概率定义的客观基础,也符合直观上的认识。大数定律从理论上说明了频率的稳定性。   弱大数定理(辛钦大数定理)设 $X_1, X_2, \cdots$ 是相互独立、服从同一分布的随机变量序列,且具有数学期望 $E(X_k) = \mu$($k = 1,…
Read more

概率论 Cheat Sheet 27:切比雪夫不等式和弱大数定律

  在概率论中,极限定理是最重要的理论结果。极限定理中,最核心的是大数定律和中心极限定理。通常,大数定律是考虑随机变量序列的平均值(在某种条件下)收敛到某期望值。相比之下,中心极限定理证明大量随机变量之和的分布在某种条件下逼近正态分布。   马尔可夫不等式 设 $X$ 为取非负值得随机变量,则对于任何常数 $a > 0$,有 \begin{equation} P\{X \geq a&#92…
Read more