Concurrency: Terminating tasks
Terminating tasks
Contents
1. The Ornamental Garden
下面的例子使用标志canceled
主动停止任务:
import java.util.concurrent.*; import java.util.*; class Count { private int count = 0; private Random rand = new Random(47); // Remove the synchronized keyword to see counting fail: public synchronized int increment() { int temp = count; if(rand.nextBoolean()) // Yield half the time Thread.yield(); return (count = ++temp); } public synchronized int value() { return count; } } class Entrance implements Runnable { private static Count count = new Count(); private static List<Entrance> entrances = new ArrayList<Entrance>(); private int number = 0; // Doesn’t need synchronization to read: private final int id; private static volatile boolean canceled = false; // Atomic operation on a volatile field: public static void cancel() { canceled = true; } public Entrance(int id) { this.id = id; // Keep this task in a list. Also prevents // garbage collection of dead tasks: entrances.add(this); } public void run() { while(!canceled) { synchronized(this) { ++number; } System.out.println(this + " Total: " + count.increment()); try { TimeUnit.MILLISECONDS.sleep(100); } catch(InterruptedException e) { System.out.println("sleep interrupted"); } } System.out.println("Stopping " + this); } public synchronized int getValue() { return number; } public String toString() { return "Entrance " + id + ": " + getValue(); } public static int getTotalCount() { return count.value(); } public static int sumEntrances() { int sum = 0; for(Entrance entrance : entrances) sum += entrance.getValue(); return sum; } } public class OrnamentalGarden { public static void main(String[] args) throws Exception { ExecutorService exec = Executors.newCachedThreadPool(); for(int i = 0; i < 5; i++) exec.execute(new Entrance(i)); // Run for a while, then stop and collect the data: TimeUnit.SECONDS.sleep(3); Entrance.cancel(); exec.shutdown(); if(!exec.awaitTermination(250, TimeUnit.MILLISECONDS)) System.out.println("Some tasks were not terminated!"); System.out.println("Total: " + Entrance.getTotalCount()); System.out.println("Sum of Entrances: " + Entrance.sumEntrances()); } }
Entrance
的cancel()
会设置canceled
为true
,之后run()
中的循环(while(!canceled)
)就会停止,任务结束。这里对canceled
的操作只有赋值和读取,都是原子操作,不会被打断,所以只需把canceled
设置为volatile
保证可见性,不需要使用同步。
在OrnamentalGarden
的main()
中结束任务时,首先使用Entrance.cancel()
让各任务停止循环,结束各自的run()
。然后调用了exec.shutdown()
和exec.awaitTermination()
:exec.awaitTermination()
用于在一段时间内等待各个任务完成,如果任务能够在时限内(这里是250毫秒)完成,则返回true
;否则返回false
,表示还有任务没有完成。
这里所有的Entrance
的实例都被添加到了一个静态的列表List<Entrance> entrances
中,所以在各个Entrance
任务完成之后,各Entrance
实例不会被回收,还可以通过entrances
来进行访问。
2. Terminating When Blocked
上面的例子中,任务在执行的过程中检查标志位,主动结束任务。如果当前线程被sleep()
等操作阻塞,就需要使用其他方法来结束任务。
2.1. Thread states
线程有以下四种状态:
- New: 线程在被创建时才会短暂地处于这一状态,进行系统资源分配和初始化,之后就会进入Runnable或者Blocked状态。
- Runnable: 线程处于可运行的状态,线程接受线程调度的控制,可能处于正在运行的状态,也可能没有在运行。
- Blocked: 线程可以运行,但是运行被阻止。线程调度会跳过该状态下的线程,直到线程返回Runnable状态。
- Dead: 线程的任务已经运行结束,如
run()
方法返回,或者被打断。此时线程不再接受调度。
2.2. Becoming Blocked
以下原因会导致线程进入Blocked状态:
- 调用
sleep()
,使线程休眠指定的时间; - 调用
wait()
,使线程被挂起,直到notify()
或notifyAll()
(或者signal()
、signalAll()
); - 任务在等待I/O操作结束;
- 任务调用其他对象上的同步方法,但该对象的锁被其他任务占用,暂时无法获得。
在旧代码中可能还会使用suspend()
和resume()
来阻塞和继续线程,但现在已被废弃。stop()
在结束线程时,不会释放线程已经获得的对象的锁定,也已经被废弃。
3. Interruption
抛出异常会打断run()
的执行。Thread
类提供了interrupt()
方法来打断线程上任务的执行,即便线程处于阻塞状态。interrupt()
会设置线程的interrupted
标志。设置了interrupted
标志的线程,如果已经处于阻塞状态,或者将要执行会导致阻塞的操作时,会抛出InterruptedException
异常。异常抛出后,interrupted
标志会被复位。
interrupt()
是Thread
的方法,但Executors
避免了对Thread
对象的直接操作。Executor
的shutdownNow()
会调用该Executor
启动的所有线程的interrupt()
方法。如果只是希望中断Executor
中的特定任务,就不能使用execute()
来直接开始任务,而是要使用submit()
来获得一个代表了任务上下文的Future<?>
,Future<?>
的cancel()
会调用对应线程的interrupt()
。
import java.util.concurrent.*; import java.io.*; class SleepBlocked implements Runnable { public void run() { try { TimeUnit.SECONDS.sleep(100); } catch(InterruptedException e) { System.out.println("InterruptedException"); } System.out.println("Exiting SleepBlocked.run()"); } } class IOBlocked implements Runnable { private InputStream in; public IOBlocked(InputStream is) { in = is; } public void run() { try { System.out.println("Waiting for read():"); in.read(); } catch(IOException e) { System.out.println("IOException"); if(Thread.currentThread().isInterrupted()) { System.out.println("Interrupted from blocked I/O"); } else { throw new RuntimeException(e); } } System.out.println("Exiting IOBlocked.run()"); } } class SynchronizedBlocked implements Runnable { public synchronized void f() { while(true) // Never releases lock Thread.yield(); } public SynchronizedBlocked() { new Thread() { public void run() { f(); // Lock acquired by this thread } }.start(); } public void run() { System.out.println("Trying to call f()"); f(); System.out.println("Exiting SynchronizedBlocked.run()"); } } public class Interrupting { private static ExecutorService exec = Executors.newCachedThreadPool(); static void test(Runnable r) throws InterruptedException{ System.out.println("--------------------------"); Future<?> f = exec.submit(r); TimeUnit.MILLISECONDS.sleep(100); System.out.println("Interrupting " + r.getClass().getName()); f.cancel(true); // Interrupts if running System.out.println("Interrupt sent to " + r.getClass().getName()); } public static void main(String[] args) throws Exception { test(new SleepBlocked()); test(new IOBlocked(System.in)); test(new SynchronizedBlocked()); TimeUnit.SECONDS.sleep(3); System.out.println("Aborting with System.exit(0)"); System.exit(0); // ... since last 2 interrupts failed } } /* Output -------------------------- Interrupting com.terminatingtasks.SleepBlocked Interrupt sent to com.terminatingtasks.SleepBlocked InterruptedException Exiting SleepBlocked.run() -------------------------- Waiting for read(): Interrupting com.terminatingtasks.IOBlocked Interrupt sent to com.terminatingtasks.IOBlocked -------------------------- Trying to call f() Interrupting com.terminatingtasks.SynchronizedBlocked Interrupt sent to com.terminatingtasks.SynchronizedBlocked Aborting with System.exit(0) */
上面的例子中,Interrupting
的test()
使用Future<?> f = exec.submit(r)
,通过submit()
提交任务给ExecutorService
,并获取返回的Future<?>
。在任务运行一段时间后,调用f.cancel(true)
中断任务。SleepBlocked
使用sleep()
产生阻塞,被中断时可以捕获到InterruptedException
异常,然后任务被中断。IOBlocked
通过等待I/O输入产生阻塞,SynchronizedBlocked
通过同步机制产生阻塞,二者不能被中断。
## 3.1. Blocked by I/O
中断I/O产生的阻塞的一种方法是关闭产生阻塞的资源。
import java.net.*; import java.util.concurrent.*; import java.io.*; public class CloseResource { public static void main(String[] args) throws Exception { ExecutorService exec = Executors.newCachedThreadPool(); ServerSocket server = new ServerSocket(8080); InputStream socketInput = new Socket("localhost", 8080).getInputStream(); exec.execute(new IOBlocked(socketInput)); exec.execute(new IOBlocked(System.in)); TimeUnit.MILLISECONDS.sleep(100); System.out.println("Shutting down all threads"); exec.shutdownNow(); TimeUnit.SECONDS.sleep(1); System.out.println("Closing " + socketInput.getClass().getName()); socketInput.close(); // Releases blocked thread TimeUnit.SECONDS.sleep(1); System.out.println("Closing " + System.in.getClass().getName()); System.in.close(); // Releases blocked thread } } /* Output Waiting for read(): Waiting for read(): Shutting down all threads Closing java.net.SocketInputStream Caught IOException Interrupted from blocked I/O Exiting IOBlocked.run() Closing java.io.BufferedInputStream Caught IOException Interrupted from blocked I/O Exiting IOBlocked.run() */
这里使用了ServerSocket
和InputStream
两种InputStream
,exec.shutdownNow()
并不能中断二者产生的阻塞。通过socketInput.close()
和System.in.close()
关闭InputStream
后,对应的任务捕获到IOException
异常,之后可以检查到interrupted
为true
,说明interrupt()
已经生效。
注意上面的输入来自Thinking in Java原书。在我的电脑上(Windows 10 x64 + JDK 8),上面的例子只有socketInput
对应的任务能够在socketInput.close()
后检查到interrupted
为true
;在System.in.close()
后,System.in
对应的任务仍处于阻塞状态,当在控制台进行任意输入并回车后,System.in
对应的任务被中断,且也能检查到interrupted
为true
,如上面例子后的Output
所示。
使用nio
相关类可以更加优雅地打断I/O造成的阻塞:
import java.net.*; import java.nio.*; import java.nio.channels.*; import java.util.concurrent.*; import java.io.*; class NIOBlocked implements Runnable { private final SocketChannel sc; public NIOBlocked(SocketChannel sc) { this.sc = sc; } public void run() { try { System.out.println("Waiting for read() in " + this); sc.read(ByteBuffer.allocate(1)); } catch(ClosedByInterruptException e) { System.out.println("ClosedByInterruptException"); } catch(AsynchronousCloseException e) { System.out.println("AsynchronousCloseException"); } catch(IOException e) { throw new RuntimeException(e); } System.out.println("Exiting NIOBlocked.run() " + this); } } public class NIOInterruption { public static void main(String[] args) throws Exception { ExecutorService exec = Executors.newCachedThreadPool(); ServerSocket server = new ServerSocket(8080); InetSocketAddress isa = new InetSocketAddress("localhost", 8080); SocketChannel sc1 = SocketChannel.open(isa); SocketChannel sc2 = SocketChannel.open(isa); Future<?> f = exec.submit(new NIOBlocked(sc1)); exec.execute(new NIOBlocked(sc2)); exec.shutdown(); TimeUnit.SECONDS.sleep(1); // Produce an interrupt via cancel: f.cancel(true); TimeUnit.SECONDS.sleep(1); // Release the block by closing the channel: sc2.close(); } } /* Output Waiting for read() in com.terminatingtasks.NIOBlocked@503c95b4 Waiting for read() in com.terminatingtasks.NIOBlocked@5efdd578 ClosedByInterruptException Exiting NIOBlocked.run() com.terminatingtasks.NIOBlocked@503c95b4 AsynchronousCloseException Exiting NIOBlocked.run() com.terminatingtasks.NIOBlocked@5efdd578 */
可见通过f.cancel(true)
中断任务会捕获到ClosedByInterruptException
,通过sc2.close()
中断任务会捕获到AsynchronousCloseException
,两种方法都可以成功地中断任务。
3.2. Blocked by a Mutex
如果一个任务调用已经被锁定的对象上的方法,该任务就会被阻塞,直到它成功获得对象的锁定。同一个任务可以反复获得同一个对象的锁定。
public class MultiLock { public synchronized void f1(int count) { if(count-- > 0) { System.out.println("f1() calling f2() with count " + count); f2(count); } } public synchronized void f2(int count) { if(count-- > 0) { System.out.println("f2() calling f1() with count " + count); f1(count); } } public static void main(String[] args) throws Exception { final MultiLock multiLock = new MultiLock(); new Thread() { public void run() { multiLock.f1(10); } }.start(); } } /* Output f1() calling f2() with count 9 f2() calling f1() with count 8 f1() calling f2() with count 7 f2() calling f1() with count 6 f1() calling f2() with count 5 f2() calling f1() with count 4 f1() calling f2() with count 3 f2() calling f1() with count 2 f1() calling f2() with count 1 f2() calling f1() with count 0 */
f1()
首先获得了锁定,然后调用synchronized
方法,f2()
可以顺利执行、不会被阻塞。f1()
和f2()
互相调用,也不会发生阻塞。
Java SE 5提供的ReentrantLocks
可以被打断。
import java.util.concurrent.*; import java.util.concurrent.locks.*; class BlockedMutex { private Lock lock = new ReentrantLock(); public BlockedMutex() { // Acquire it right away, to demonstrate interruption // of a task blocked on a ReentrantLock: lock.lock(); } public void f() { try { // This will never be available to a second task lock.lockInterruptibly(); // Special call System.out.println("lock acquired in f()"); } catch(InterruptedException e) { System.out.println("Interrupted from lock acquisition in f()"); } } } class Blocked2 implements Runnable { BlockedMutex blocked = new BlockedMutex(); public void run() { System.out.println("Waiting for f() in BlockedMutex"); blocked.f(); System.out.println("Broken out of blocked call"); } } public class Interrupting2 { public static void main(String[] args) throws Exception { Thread t = new Thread(new Blocked2()); t.start(); TimeUnit.SECONDS.sleep(1); System.out.println("Issuing t.interrupt()"); t.interrupt(); } } /* Output Waiting for f() in BlockedMutex Issuing t.interrupt() Interrupted from lock acquisition in f() Broken out of blocked call */
BlockedMutex
在创建时就对其自己的lock
进行了锁定,Blocked2
的blocked.f()
被阻塞,t.interrupt()
可以成功消除阻塞,Blocked2
得以继续运行至结束。
4. Checking for an Interrupt
当调用interrupt()
时,中断只会在任务运行至会产生阻塞的操作或任务已经被阻塞时发生,如果任务中没有会产生阻塞的操作,就无法被interrupt()
打断。
在线程上调用interrupt()
会为线程设置一个被打断的标志位,该标志位可以通过Thread.interrupted()
来查询;调用Thread.interrupted()
后,该标志位会被自动清除。
下面的例子展示了当run()
中可能不存在阻塞操作时,使用Thread.interrupted()
判断是否应当打断任务的方法:
import java.util.concurrent.*; class NeedsCleanup { private final int id; public NeedsCleanup(int ident) { id = ident; System.out.println("NeedsCleanup " + id); } public void cleanup() { System.out.println("Cleaning up " + id); } } class Blocked3 implements Runnable { private volatile double d = 0.0; public void run() { try { while(!Thread.interrupted()) { // point1 NeedsCleanup n1 = new NeedsCleanup(1); // Start try-finally immediately after definition // of n1, to guarantee proper cleanup of n1: try { System.out.println("Sleeping"); TimeUnit.SECONDS.sleep(1); // point2 NeedsCleanup n2 = new NeedsCleanup(2); // Guarantee proper cleanup of n2: try { System.out.println("Calculating"); // A time-consuming, non-blocking operation: for(int i = 1; i < 2500000; i++) d = d + (Math.PI + Math.E) / d; System.out.println("Finished time-consuming operation"); } finally { n2.cleanup(); } } finally { n1.cleanup(); } } System.out.println("Exiting via while() test"); } catch(InterruptedException e) { System.out.println("Exiting via InterruptedException"); } } } public class InterruptingIdiom { public static void main(String[] args) throws Exception { if (args.length != 1) { System.out.println("usage: java InterruptingIdiom delay-in-mS"); System.exit(1); } Thread t = new Thread(new Blocked3()); t.start(); TimeUnit.MILLISECONDS.sleep(new Integer(args[0])); t.interrupt(); } } /* Output NeedsCleanup 1 Sleeping NeedsCleanup 2 Calculating Finished time-consuming operation Cleaning up 2 Cleaning up 1 NeedsCleanup 1 Sleeping Cleaning up 1 Exiting via InterruptedException */
运行这个例子必须要使用命令行指定打断任务的延时,上面的Output
只是给出了一种可能的情况,
需要特别注意通过异常中断任务后的收尾工作,Blocked3
的run()
在NeedsCleanup n1 = new NeedsCleanup(1)
实例化n1
后紧跟try-finally
,并在finally
中清理n1
。